製造の仕事をしていると、工程能力を計算するときに「正規分布」、「バラツキσ(シグマ)」という言葉を聞くことがあります。でも・・・
って思うことありませんか?
本記事では「正規分布・正規分布のバラツキという言葉を始めて聞いた」という方に向けて簡単なイメージをお伝えします。
専門的には間違っているかも知れませんが、だいたいこんな感じ!と言うイメージを持って頂ければと思います。
正確で専門的なことが知りたい方向けではありませんので、ご了承下さい。(^^;;;
- 正規分布を始めて聞いた人
- 工程能力がさっぱり理解出来ない人
正規分布って何?
これを見ている多くの方は、会社勤めをされていると思いますので、会社の出社時間(タイムカードを切った時間)で具体的な例を挙げてみます。
毎日、朝7時に家を出て、会社まで約40分で着く人を考えてみます。1~10日目までの出社時間が下の表になったとします。
毎日7時に家を出ても、信号待ちや混み具合で会社に着く時間は少し前後してます。早い日で7時38分、遅い日で7時45分ですね。

このグラフの見方を少し変えてみます。
下の表・グラフは、「何時何分に何回出社した?」です。10日間では7時43分が1番多くて3回になっています。

同じような見方で1ヶ月(30日)のデータにしてみます。
同じようなデータが並びましたね。。(休みありませんが、気にしないで下さいね)

これをまた「何時何分に何回出社した?」に変換します。
少し山のように見えてきたと思います。

出社時間のデータをどんどん追加していくと、「 山 」ができてきます。
下のグラフを見ると7時に家を出て、だいたい7時41~42分に到着してます。遅い日でも7時51分、早い日で7時35分ですが、あまり回数は多くありません。

この山のように見えるものを「正規分布」と呼びます。
何となく「正規分布」のイメージが湧(わ)いてきたかな?と思います。
バラツキって何?
バラツキは、「正規分布で曲線のように見える山の幅」のことをバラツキと呼びます。

だいたい7時40~42分に会社に到着しますが、早い日で7時35分、遅い日は7時51分があります。この出勤時間の早い、遅いがバラツキになります。
ここで、少し確率の話をしてみます。
出勤の早い日、遅い日はありますが、その回数は多くありません。
下の表の「確率1」の列にそれぞれの割合を計算してみました。「確率2~4」は、ある時間帯を合計したものです。

7時41分が1番確率が高くて、全体の14%になります。
「確率2」の列を見ると、7時38分~7時44分までの合計が72%です。
これは7時に家を出ると72%の確率で7時38~44分に会社に着くことを意味します。
同じように「確率3、4」の列を見ると、
91%の確率で7時36~46分に会社に着き、99%の確率で7時33~49分に会社に着くことが分かります。
山のグラフを出社回数から、出社時間の確率に変えてみます。

正規分布の曲線は変わらないことが分かります。これで出勤時間のデータベースの出来上がりです。
僕もそうですが、皆さんも過去の経験(実績)から家を出る時間を決めたと思います。
このように、過去のデータに基づいて未来を予測する・物事を決めることを「統計学」と呼んだりします。
σ(シグマ)って何?
出社時間のグラフから正規分布の曲線だけを取り出して考えてみます。
計算から描くことができる、キレイな正規分布の曲線が下のグラフになります。
この曲線を計算する式があるのですが、ここでは割愛です(^^;;

この曲線の「-1~0~1」までの面積を計算すると全体の約68%になります。

同じように「-2~0~2」までの面積を計算すると全体の約95%になります。

同じように「ー3~0~3」の面積は、約99.7%
「-4~0~4」の面積は、約99.994%と、どんどん100%に近づいていきます。
このグラフの「1」を「1σ(シグマ)」と呼びます。
- 「-1~0~1」の範囲を「±1σ」(1を省略して、±σ)
- 「-2~0~2」の範囲を「±2σ」
- 「-3~0~3」の範囲を「±3σ」 と呼ばれています。
σ(シグマ)は、「標準偏差」とも呼ばれます。
σ(シグマ)は、「正規分布のバラツキを表現する単位」になります。
σの範囲 | 範囲の中に入る確率 | 範囲から外れる確率 |
±σ | 68.3% | 31.7% |
±2σ | 95.4% | 4.55% |
±3σ | 99.73% | 0.269% |
±4σ | 99.993% | 0.0063% |
±5σ | 99.99994% | 0.000057% |
±6σ | 99.9999998% | 0.00000019% |
6σって天文学的な数値ですね。
Excel(エクセル)でのσ(シグマ)の計算方法
σ(シグマ)はExcelを使って簡単に計算することができます。
出社時間30日を例にσ(シグマ)を計算してみます。

Excel関数の「STDEV.P」を使用します。少し古いExcelだと「STDEVP」になります。
30日間の出社時間だとバラツキσは、2分46秒になりました。
2σはバラツキσの値を2倍、3σは3倍すればOKです。
このσ、2σ、3σの値を出社の平均時間7時42分8秒にプラス、マイナスして、それぞれの時間を計算して、結果をグラフに反映してみます。

この結果では、明日の出社時間は7時39~44分が68%の確率になります。
まとめ
本記事では、正規分とバラツキ、シグマについて説明しました。
ある値を中心に山のように見える曲線です
ある値を中心として山のように見える曲線の幅です。
正規分布のバラツキを表現する単位です。
工程管理を行う上での基本的な考え方となる正規分布について、少しでも理解頂けたらと思います。
最後までお付き合い、ありがとうございました。